Exploring J. S. Mill’s classification of misconceptions (part 1)

The philosopher John Stuart Mill (1806-1873) offers an intriguing system for classifying misconceptions (or ‘fallacies’ as he terms them) that could be useful for teachers in understanding many of the misconceptions and preconceptions that our students hold.

My own thoughts on this issue have been profoundly shaped by the ‘Resources Framework‘ as presented by authors such as Andrea di Sessa, David Hammer, Edward Redish and others. What follows is not a rejection of this approach but rather an exploration of whether Mill’s work offers some relevant insights. My thought is that it quite possibly might; after all, it has happened before . . .

The authors, however, did not use or refer to Mill’s system of logic in developing the programs or in formulating their theory of instruction. They didn’t discover parallels between their theory of instruction and Mill’s logic until after they had finished writing the bulk of ‘Theory of Instruction’. The discovery occurred when they were writing a chapter on theoretical issues. In their search for literature relevant to their philosophical orientation, they came across Mill’s work and were shocked to discover that they had independently identified all the major patterns that Mill had articulated. ‘Theory of Instruction’ (1982) even had parallel principles to the methods in ‘A System of Logic’ (1843)

Engelmann and Carnine 2013: Chapter 2

Mill’s system for classifying fallacies

In A System of Logic (1843), Mill argues that

Indifference to truth can not, in and by itself, produce erroneous belief; it operates by preventing the mind from collecting the proper evidences, or from applying to them the test of a legitimate and rigid induction; by which omission it is exposed unprotected to the influence of any species of apparent evidence which offers itself spontaneously, or which is elicited by that smaller quantity of trouble which the mind may be willing to take.

Mill 1843: Book V Chap 1

Mill is saying that we don’t believe false things because we want to, but because there are mechanisms preventing our minds from duly noting and weighing the myriad evidences from which we construct our beliefs about the world by the process of induction.

He suggests that there are five major classes of fallacies:

  • A priori fallacies;
  • Fallacies of observation;
  • Fallacies of generalisation;
  • Fallacies of ratiocination; and
  • Fallacies of confusion

Erroneous arguments do not admit of such a sharply cut division as valid arguments do. An argument fully stated, with all its steps distinctly set out, in language not susceptible of misunderstanding, must, if it be erroneous, be so in some one of these five modes unequivocally; or indeed of the first four, since the fifth, on such a supposition, would vanish. But it is not in the nature of bad reasoning to express itself thus unambiguously.

Mill 1843: Book V Chap 1

Mill is saying that invalid inferences, by their very nature, are ‘messier’ and harder to classify than correct inferences. However, they must all fit into the five categories outlined above. Actually, they are more likely to fit into the first four categories since clear and unambiguous use of language and terms would tend to eliminate fallacies of confusion as a matter of course.

What is an a priori fallacy?

In philosophy, a priori means knowledge derived from theoretical deduction rather than from empirical observation or experience.

Mill says that a priori fallacies (which he also calls fallacies of simple observation) are

those in which no actual inference takes place at all; the proposition (it cannot in such cases be called a conclusion) being embraced, not as proved, but as requiring no proof; as a self-evident truth.

Mill 1843: Book V Chap 3

In other words, an a priori fallacy is an idea whose truth is accepted on its face value alone; no evidence or justification of its truth is needed. An example from physics education might be ideas such as ‘heavy objects fall’ or ‘wood floats’. Some students accept these as obvious and self-evident truths: there is no need to consider ideas such as weight and resultant force or density and upthrust because these are ‘brute facts’ about the world that admit of no further explanation. This a case of mislabelling subjective facts as objective facts.

Falling is a location-specific behaviour: objects on Earth will indeed tend to accelerate downwards towards the centre of the Earth: this is a subjective fact which is dependent on the location of the object rather than an objective fact about the behaviour of all objects everywhere (although we could, of course, argue that falling is indeed an objective fact about objects which are subject to the influence of gravitational fields). Equally, floating is not a phenomenon restricted to the interaction between wood and water: many woods will sink in low density oils. ‘Wood floats‘ is not an objective fact about the universe but rather a subjective fact about the interaction of wood with a certain liquid.

This may be why some students are incurious about certain phenomena because they regard them as trivial and obvious rather than manifestations of the inner workings of the universe.

Mill lists many other examples of the a priori fallacy, but his examples are drawn from the history of science and philosophy, and so are of less direct relevance to the science classroom, with the possible exception of the two following examples:

Humans tend to default to the assumption that any phenomenon must necessarily have only a single cause; in other words, we assume that a multiplicity of causes is impossible. We are protected from this version of the a priori fallacy by the guard rail of the scientific method. For a complete understanding of a phenomenon, we look at the effect of one independent variable at a time whilst controlling other possible variables.

There remains one a priori fallacy or natural prejudice, the most deeply-rooted, perhaps, of all which we have enumerated; one which not only reigned supreme in the ancient world, but still possesses almost undisputed dominion over many of the most cultivated minds … This is, that the conditions of a phenomenon must, or at least probably will, resemble the phenomenon itself … the natural prejudice which led people to assimilate the action of bodies upon our senses, and through them upon our minds, to the transfer of a given form from one object to another by actual moulding.

Mill 1843: Book V Chap 3

I think that this tendency might be the one in play with the difficulties that many students have with understanding how images are formed: they think that an image is an evanescent ‘clone’ of the object that is being imaged rather than being an artefact of the light rays reflected or emitted from the object. This also might help explain why students find explaining the colour changes produced by looking at an object through a colour filter or illuminating it with coloured light difficult: they assume that colour is an essential unalterable property that adheres to the object and cannot be changed without changing the object.

We’ll continue this exploration of Mill’s classification of misconceptions in later posts.

References

Engelmann, S., & Carnine, D. (2013). Could John Stuart Mill Have Saved Our Schools? Attainment Company, Inc.

Mill, J. S. (1843). A System of Logic. Collected Works.

Should we introduce speed using s×t=d instead of s = d÷t?

It is a truth which is by no means universally acknowledged, but one of which I hope shortly to persuade the reader, that introducing speed to 11-14 year-old students as speed=distance÷time or s=d ÷ t is not the most pedagogically effective approach.

This may initially seem like perverse idea since surely s = d ÷ t and s × t = d are mathematically equivalent expressions? They are, but it is my contention that many students find expressions of the format s = d ÷ t more cognitively demanding that s×t=d. This is because many students struggle with the concept of inverse relationships, particularly those involving multiplication and division.

[Researchers have] suggested that multiplicative concepts may be more difficult to acquire than additive ones, and speculated that although addition and subtraction concepts and procedures extend to multiplication and division, the latter also include unique aspects unrelated to addition and subtraction.

Robinson and LeFevre 2012: 426

In short, many students can handle solving problems such as a + b = c where (say) the numerical values of b and c are known. This can be solved by performing the operation a + b – b = c – b leading to a = c – b and hence a solution to the problem. However, students — and many adults(!) — find solving a similar problem of the format a=b÷c much more problematic, especially in cases when b÷c is not a simple integer.

Compounding students’ inability to utilise multiplicative structures, is their failure to recognise the isomorphism between proportion problems. Another possible reason is that a reluctance or inability to deal with the non-integer relationships (‘avoidance of fractions’), coupled with the high processing loads involved, seems to be the likely cause of this error

Singh 2000: 595

The problem with the s=d÷t format

In this analysis, we will assume that a direct calculation of s when d and t are known is trivial. The problem with the s=d÷t format is that it may require students to apply two problem solving procedures which, to the novice learner, have highly dissimilar surface features and whose underlying isomorphism is, therefore, hidden from them.

  • To find d if s and t are known, they need to multiply both sides by t (see Example 1).
  • To find t if s and d are known, they need to divide both sides by s and then multiply both sides by t (see Example 2)

Example 1
Example 2

(For more on using the ‘FIFA’ mnemonic for calculations, click on this link.)

Easing cognitive load with the s x t = d format

As above, we will assume that a direct calculation of d when s and t are known is trivial. What happens when we need to find s and t, given that they are the only unknown quantities?

  • If t and d are known, then we can find s by dividing both sides by t (see Example 3).
  • If s and t are known, then we can find t by dividing both sides s (see Example 4).

Example 3
Example 4

Examples 3 and 4 have highly similar surface features as well as a deeper level isomorphism and allow a commonality of approach which I think is immensely helpful for novice learners.

Robinson and LeFevre (2012: 411) call this type of operation ‘the inversion shortcut’ and argue (for a different context than the one presented here) that:

In three-term problems such as a × b ÷ b, the knowledge that b ÷ b = 1, combined with the associative property of multiplication, allows solvers to implement an inversion shortcut on problems such as 4×24÷24. The computational advantage of using the inversion shortcut is dramatic, resulting in greatly reduced solution times and error rates relative to a left-to-right solution procedure. […] Such knowledge of how inverse operations relate in a variety of circumstances forms the basis for understanding and manipulating algebraic expressions, an important mathematical activity for adolescents

Conclusion

I think there is a strong case to be made for this mode of presentation to be applied to a wider range of physics contexts for 11-16 year-old students such as:

  • Power, so that the definition of power is initially presented as P × t = E or P × t = W; that is to say, we define power as the energy transferred in one second.
  • Density, so that ρ × V = m; that is to say, we define density as mass of 1 m3 or 1 cm3.
  • Pressure, so that the definition of pressure is initially presented as p × A = F; that is to say, we define pressure as the force exerted on an area of 1 metre squared.
  • Acceleration, so that a × t = Δv; that is to say, we define acceleration as the change in velocity produced in one second.

Please feel free to leave a comment

References

Robinson, K. M., & LeFevre, J. A. (2012). The inverse relation between multiplication and division: Concepts, procedures, and a cognitive framework. Educational Studies in Mathematics79(3), 409-428.

Singh, P. (2000). Understanding the concepts of proportion and ratio among grade nine students in Malaysia. International Journal of Mathematical Education in Science and Technology31(4), 579-599.

Gears for GCSE Physics

I recently made a bit of a mess of teaching the topic of gears by trying to ‘wing it’ with insufficient preparation. To avoid my — and possibly others’ — future blushes, I thought I would compile a post summarising my interpretation of what students need to know about gears for AQA GCSE Physics.

I am going to include some handy gifs and a clean, un-annotated Google Jamboard (my favoured medium for lessons).

Any continuing errors, omissions or misconceptions are entirely my own fault.

‘A simple gear system can be used to transmit the rotational effect of a force’ [AQA 4.5.4]

A gear is a wheel with teeth that can transmit the rotational effect of a force.

For example, in the gear train shown above, the first gear (A) is turned by a motor (green dot shown below). The moment (rotational effect) is passed via the interlocking teeth to gear B and so on down the chain to gear E. It is also worth pointing out that gear A has a clockwise moment but gear B has an anticlockwise moment. The direction alternates as we move down the chain. It takes a gear train of five gears to transmit the clockwise moment from gear A to gear E.

Gears A-E are all equal in size with the same number of teeth and, consequently, the moment does not change in magnitude as it passes down the chain (although, as noted above, it does change direction from clockwise to anticlockwise).

‘Students should be able to explain how gears transmit the rotational effect of forces’ [AQA 4.5.4]

Part 1: A reduction gear arrangement

The driving gear (coloured blue) is smaller and has 6 teeth compared with the large gear’s 18 teeth. This is called a reduction gear arrangement.

A reduction gear arrangement does two things:

  1. It slows down the speed of rotation. You may notice that the large gear turns only one for each three turns of the small gear.
  2. The larger gear exerts a larger moment than the smaller gear. This is because the distance from the centre to the edge is larger for the grey gear.

The blue gear A exerts a force FA on gear B. By Newton’s Third Law, gear B exerts an equal but opposite force FB on gear A. Let’s take the magnitude of both forces to be F.

The anticlockwise moment exerted by gear A is given by m = F x d. The clockwise moment exerted by gear B is given by M=F x D. Since D > d then M > m.

A reduction gear arrangement is typically used in devices like an electric screwdriver. The electric motor in the device produces only a small rotational moment m but a large moment M is needed to turn the screws. The reduction gear produces the large moment M required.

Part 2: The overdrive arrangement

What happens when the driver gear is larger and has a greater number of teeth than the driven gear? This is called an overdrive arrangement.

The example we are going to look at is the arrangement of gears on a bicycle.

Here the driver gear (on the left) is linked via a chain to the smaller driven gear on the right. This means that the anticlockwise moment of the first gear is transmitted directly to the second gear as an anticlockwise moment. That is to say, the direction of the moment is not reversed as it is when the two gears are directly linked by interlocking teeth.

In the example shown, the big gear A turns only once for each four turns completed by the smaller gear B. Let’s assume that gear A exerts a force F on the chain so that the chain exerts an identical force F on gear B. Since D > d, this means that M > m so that the arrangement works as a distance multiplier rather than a force multiplier. This is, of course, excellent if we are riding at speed along a horizontal road. However, if we encounter an upward incline we may wish to — using the gear changing arrangement on the bike — swap the small gear B with one with a larger value of d. This would have the happy effect of increasing the magnitude of m so as to make it slightly easier to pedal uphill.

The annotate-able Jamboard is available here.

Acknowledgements

I used Gear Generator, Gear Generator 2 and EZgif to produce the gear animations.

Dual coding change of momentum

Rosencrantz (an anguished cry): CONSISTENCY IS ALL I ASK!

Tom Stoppard, Rosencrantz and Guildenstern Are Dead (1966)

I think that dual coding techniques can be extremely helpful in helping students understand the concept of change of momentum.

To engage our students’ physical intuitions, let’s consider a question like: Which would hurt more — being hit by a sandbag or being hit by a rubber ball?

Let’s assume that the sandbag and rubber ball have the same mass m and are travelling at the same initial velocity u. We choose ‘u‘ because it’s the initial velocity and we take ‘v‘ as the final velocity: a very subtle piece of dual coding that can reap rewards if applied consistently — pace Rosencrantz(!) — over a range of disparate examples.

To analyse this problem, let’s use the momentum version of Newton’s Second Law of Motion.

We will use the change = final – initial convention (‘Consistency is all I ask!’)). The initial momentum is pi and the final momentum is pf.

Now let’s work out the change in momentum in each case. We will assume that each item is dropped so that it impacts vertically on a horizontal surface. The velocity just before it hits is u so its initial momentum pi is given by pi = mu; its final velocity is v so its final momentum pf is given by pf = mv. The sandbag does not rebound, so its final velocity v is zero.

The rubber ball rebounds from the surface with a velocity v (we have shown that v < u so we are not assuming a perfectly elastic collision).

We will use the down-is-positive convention so that u is positive and the downward momentum pi are positive in both cases. However, the velocity v of the ball is negative so the momentum pf = mv is negative (upwards).

To add vectors, we simply put them ‘nose to tail’. However, in this case, we need to subtract the vectors, not add them. To do this, we use the operation pf + (-pi,). In other words, we put the vector pf nose to tail with minus pi, or with a vector pointing in the opposite direction to the original vector pi. These are shown in the table.

We can see that the change in momentum Δp is larger in the case of the rubber ball.

Applying Newton Second Law that force = change in momentum / change in time then (assuming the time of each interaction is the same) then we can conclude that the (upward) force exerted by the surface on the ball is larger than the force exerted by the surface on the sandbag.

From Newton’s Third Law (that if an object A exerts a force on object B, then object B exerts an equal and opposite force on object A), we can also conclude that the rubber exerts a larger downward force on the surface. This implies that, if the ball hit (say) your hand, then it would hurt more than the sandbag.

Considering change of momentum problems like this helps students answer questions such as the one shown below:

Exam question on change in momentum (solid black arrow and red arrow added)

We can discard options C and D since the change of momentum shown is in the wrong direction: the vertical component of momentum will remain unchanged.

A and B show changes of momentum of the same magnitude in the horizontal direction. However, if we take the horizontal component of the initial momentum as positive then the change of momentum on the gas particle must be negative; this implies that the correct answer is B.

Note also that diagram B shows the pf + (-pi) operation outlined above, with the arrow showing minus pi shown in red (added to the original exam question).

Introducing vectors (part 2)

This post suggests some strategies for teaching vectors to 14-16 olds. In part 1 we looked at the idea of combining two vectors into one; that is to say, finding the resultant vector. In this part, we’re going to look at the inverse operation: splitting a single vector into two component vectors.

We’re going to use scale drawing rather than trigonometry since (a) this often leads to a more secure understanding; and (b) it is the expected method in the UK curriculum for 14-16 year olds.

What is a component vector?

A component vector is one of at least two vectors that will combine to give one single original vector. The component vectors are chosen so that they are mutually perpendicular. Because of this, they cannot affect each other’s magnitude and direction and so can be dealt with separately and independently; that is to say, we can choose to consider what effect the vertical component will have on its own without having to worry about what effect the horizontal component will have.

Introducing components as ‘the vector less travelled by’

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Robert Frost, 'The Road Less Travelled'

Let’s say we travelled a distance of 13 m from point O to point P on a compass bearing of 067 degrees (bear with me, I’m working with a slightly less familiar Pythagorean 3:4:5 triple here). This could be drawn as a scale diagram as shown below.

Could we analyse the displacement OP in terms of an eastward displacement and a northward displacement?

We can — as shown below.

The dotted line OX is the eastward (horizontal on our diagram) component of the displacement OP. It is drawn as a dotted line because it is (literally) the ‘road less travelled’. We did not walk along that road — and that’s why it is drawn as a dotted line — but we could have done.

But let’s say that we had, and that we had stopped when we reached the point marked X. And then we look around, and strike out northwards and walk the (vertical) ‘road less travelled called XP — and we end up at P.

So walking one road less travelled might, indeed, make ‘all the difference’ — but walking two roads less travelled does not.

To rewrite Robert Frost: We took the two roads less travelled by / And that has made NO difference.

But why should we wish to go the ‘long way around’, even if we still end up at P? Because it would allow us to work out the change in longitude and latitude. By moving from O to P we change our longitude by 12 metres and our latitude by 5 metres. (Don’t believe me? Count the squares on the diagram!)

We have resolved the 13 metre distance into two components: one eastward (horizontal) component of 12 metres and one northward component of 5 metres.

Using resolving a vector into components to solve problems

We can use the scale drawing technique outlined above to resolve (‘split’) the 3000 N vector into a horizontal component and a vertical component.

The full solution is shown in sequence on this PowerPoint.

Gravitational potential: the ‘bottom of a hole’ perspective

The surface of Mars imaged by NASA’s Curiosity rover in 2013

April 20, 2112: The sky is flat, the land is flat, and they meet in a circle at infinity. No star shows but the big one, a little bigger than it shows through most of the [asteroid] Belt, but dimmed to red, like the sky. It’s the bottom of a hole, and I must have been crazy to risk it. […] The stars are gone, and the land around me makes no sense. Now I know why they call planet dwellers ‘flatlanders’. I feel like a gnat on a table. I’m sitting here shaking, afraid to step outside. […] I’M AT THE BOTTOM OF A LOUSY HOLE!

Larry Niven, ‘At The Bottom of a Hole’ (1966)

Redish and Kuo (2015: 586) suggest that tapping into our students’ innate physical intuitions can be a very productive teaching strategy. For example, Redish observed some physics instructors teaching non-physics majors how to interpret a potential energy U against the separation r between particles graph (diagram 8(a) below).

From Redish and Kuo (2015)

The students were finding it difficult to answer the question of whether the particles would attract or repel each other when they had energy E and were at a separation of C. Redish noted that the instructors advised the students to consider the derivative of the curve at C (diagram 8(b) above) and, since it had a positive gradient, to surmise that the force between the particles would therefore be attractive since F=-dU/dr. Redish suggested:

A more effective approach for this population might be to begin with an embodied analogy and implicitly supporting epistemologies valuing physical intuition. Start with treating a potential energy curve as a track or hill and, using the analogy of gravitational potential energy, then place a ball on the hill as shown in Fig. 8c.

Redish and Kuo (2015)

Which way would the ball roll in 8(c) roll? Redish said that the students had no problem deducing that the particles would exert an attractive force on each other at C (and a repulsive force when their energy is E at the smaller value of r) after using this analogy.

Using students’ physical intuitions to help understand gravitational potential

The episode outlined above reminded me of a science fiction story by Larry Niven that I had read many years ago. In ‘At the Bottom of a Hole’, Niven imagined what landing on a planet would feel like to a ‘Belter’; that is to say, to a human being who had spent their entire life navigating between the small worlds of the asteroid Belt: small planetoid-sized worlds whose shallow gravitational fields required only a low-intensity burn for a spaceship to slip free of their influence forever. An extract from the story is quoted as an introduction to this post: in essence, the ‘Belter’ who has lived his life voyaging between the low mass and low gravity worldlets of the asteroid belt finds it emotionally and psychologically disturbing to find himself at the bottom of a deep gravitational hole.

Gravitational Fields are always ‘holes’

Gravitational fields are always holes (unlike electric fields, of course, which can be either ‘holes’ or ‘mountains’; this may well form the basis of a later post).

The mass of the Earth produces a much deeper gravitational hole than the much smaller mass of an asteroid.

As a consequence, a spaceship near the Earth’s surface (A) needs to burn a lot more fuel (i.e. do a lot more work) to completely escape the gravitational influence of the Earth (B) then a spaceship near to the surface of an asteroid. The spaceship closer to the asteroid (C) needs a much smaller burn to completely escape its gravitational influence (D).

To a mature space-faring civilisation, living on the surface of a planet could well be likened (and seem as eccentric) as living at the bottom of a spectacularly deep hole.

Gravitational potential

The gravitational potential of an object of mass M is given by:

where G is the Gravitational Constant and r is the displacement from the centre of mass of the object. The units of V would be joules per kilogram J/kg.

Note that the magnitude of V gets larger as r decreases. This allows us to represent a gravitational field in terms of equipotential lines (dotted on the diagram below) as well as field lines (solid).

Modelling gravitational potential as a three dimensional hole

We can engage our own and our students’ physical intuitions by picturing the equipotential lines as being contour lines indicating the depth of a three dimensional hole.

An object represented as a ball at position A will not tend to roll down into the hole since there is no discernible downhill ‘slope’ at A; in effect, as r tends towards infinity then the object is beyond the effects of M’s gravity. A position outside the gravitational field of a massive object has a gravitational potential of zero.

Let’s think about what happens as r decreases until the object is at B. Here we can intuitively surmise that it will experience a small force tending to make it fall deeper into the hole. How much work will the gravitational field have done moving an object from infinity to this position? The answer is, of course, 0.5 MJ for each kilogram of mass.

How much work will be done by the gravitational field moving the object from B to C? The answer is again an extra 0.5 MJ/kg but note that this happens over a much smaller change in r than before because the gravitational field is becoming more intense. Again, we can intuit that the object will experience a stronger gravitational force at C than at B.

We can go on to argue that a similar pattern of behaviour will also occur at D and E.

But the real value of this representation is, in my opinion, helping students understand how much energy a body needs to escape the influence of a gravitational field.

If we start at B, we would have to do 0.5 MJ/kg of work on it to make it escape. In other words, it needs 0.5 MJ/kg to climb out of the hole.

If we started at C, then we would need 1.0 MJ/kg; and D, 1.5 MJ/kg and so on.

If we were considering a spacecraft operating in the vacuum of space, then transferring 2.0 MJ/kg of kinetic energy would allow ot to completely escape the gravitational influence of M; or, in other words, to reach a value of r such that its gravitational potential is zero.

Near the Earth’s surface where r = 6.38 x 106 m, the gravitational potential can be calculated as follows:

That is to say, a body would need to gain 64.4 MJ of kinetic energy for each kilogram of its mass to completely escape from the influence of the Earth’s gravity.

We can therefore calculate the escape velocity for a body near the Earth surface as follows:

As I mentioned above, I think the real power of this way of tapping into physical intuition for understanding fields comes when we use it to represent electric fields. I will cover that in a later post.

Reference

Redish, E. F., & Kuo, E. (2015). Language of physics, language of math: Disciplinary culture and dynamic epistemologyScience & Education24, 561-590.

The ‘all-in-a-row’ circuit diagram convention for series and parallel circuits

Circuit diagrams can be seen either as pictures or abstractions but it is clear that pupils often find it hard to recognise the circuits in the practical situation of real equipment. Moreover, Caillot found that students retain from their work with diagrams strong images rather than the principles they are intended to establish. The topological arrangement of a diagram or a drawing presents problems for pupils which are easily overlooked. It seems that pupils’ spatial abilities affect their use of circuit diagrams: they sometimes do not regard as identical several circuits, which, though identical, have been rotated so as to have a different spatial arrangement. […] Niedderer found that pupils, when asked whether a circuit diagram would ‘work’ in practice, more often judged symmetrical diagrams to be functioning than non-symmetric ones.

Driver et al. (1994): 124 [Emphases added]

For the reasons outlined by Driver and others above, I think it’s a good idea to vary the way that we present circuit diagrams to students when teaching electric circuits. If students always see circuit diagrams presented so that (say) the cell is at the ‘top’ and ‘facing’ a certain way; or that they are drawn so that they are symmetrical (which is an aesthetic rather that a scientific choice), then they may well incorrectly infer that these and other ‘accidental’ features of our circuit diagrams are the essential aspects that they should pay the most attention to.

One ‘shake it up’ strategy is to redraw a circuit diagram using the ‘all-in-a-row’ convention.

If you arrange the real components in the ‘all-in-a-row’ arrangement, then a standard digital voltmeter has, what is in my opinion a regrettably underused functionality, that will show:

  • ‘positive’ potential differences: that is to say, the energy added to the coulombs as they pass through a cell or the electromotive force; and
  • ‘negative’ potential differences: that is to say, the energy removed from each coulomb as they pass through a resistor; these can be usefully referred to as ‘potential drops’

This can be shown on circuit diagrams as shown below/

In other words, the difference between the potential difference across the cell (energy being transferred into the circuit from the chemical energy store of the cell) is explicitly distinguished from the potential difference across the resistor (energy being transferred from the resistor into the thermal energy store of the surroundings). The all-in-a-row convention neatly sidesteps a common misconception that the potential difference across a cell is equal to the potential difference across a resistor: they are not. While they may be numerically equal, they are different in sign, as a consequence of Kirchoff’s Second Law. As I have suggested before, I think that this misconception is due to the ‘hidden rotation‘ built into standard circuit diagrams.

Potential divider circuits and the all-in-a-row convention

Although I am normally a strong proponent of the ‘parallel first heresy‘, I’ll go with the flow of ‘series circuit first’ in this post.

Diagrams 2 and 3 in the sequence show that the energy supplied to the coulombs (+1.5 V or 1.5 joules per coulomb) by the cell is transferred from the coulombs as they pass through the double resistor combination. Assuming that R1 = R2 then, as diagram 4 shows, 0.75 joules will be transferred out of each coulomb as they pass through R1; as diagram 5 shows, 0.75 joules will be transferred out of each coulomb as they pass through R2.

Parallel circuits and the all-in-a-row convention

I’ve written about using the all-in-a-row convention to help explain current flow in parallel circuits here, so I will focus on understanding potential difference in parallel circuit in this post.

Again, diagrams 2 and 3 in the sequence show that the positive 3.0 V potential difference supplied by the cell is numerically equal (but opposite in sign) to the negative 3.0 V potential drop across the double resistor combination. It is worth bearing in mind that each coulomb passing through the cell gains 3.0 joules of energy from the chemical energy store of the cell. Diagrams 4 and 5 show that each coulomb passing through either R1 or R1 loses its entire 3.0 joules of energy as it passes through that resistor. The all-in-a-row convention is useful, I think, for showing that each coulomb passes through just one resistor as it makes a single journey around the circuit.

Acknowledgements

Circuit simulations from the excellent https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-construction-kit-dc_en.html

Circuit diagrams drawn using https://www.circuit-diagram.org/editor/

Reference

Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas. Routledge.

Just a moment . . .

Many years ago, I was taught this compact and intuitive convention to show turning moments. I think it should be more widely known, as it not only is concise and powerful, but also meets the criterion of being an effective form of dual coding which is helpful for both GCSE and A-level Physics students.

Let’s look at an example question.

Let’s start by ‘annotating the hell’ out of the diagram.

We could take moments around any of the marked points A-E on the diagram. However, we’re going to take moments around B as it enables us to ignore the upward reaction force acting on the rule at B. (This force is not shown on the diagram.)

To indicate that we’re going to be considering the sum of the clockwise moments about point B, we use this intuitive notation:

If we consider the sum of anticlockwise moments about point B, we use this:

We lay out our calculations of the total clockwise and anticlockwise moments about B as follows.

We show that we are going to apply the Principle of Moments (the sum of clockwise moments is equal to the sum of anticlockwise moments for an object in equilibrium) like this:

The rest, as they say, is not history but algebra:

I hope you find this ‘momentary’ convention useful(!)

Showing complex energy transfers using bar models

Real life energy transfers can be messy. That is to say, they are complicated and difficult to understand. I think many students get lost in the dense forest of verbiage that has to be deployed to describe their detail and nuance. Bar models are, I think, an effective teaching tool to avoid cognitive overload, especially for GCSE Physics and Combined Science students.

Windmills of our minds

As an example, let’s consider a wind turbine used to generate electricity. As a starting point, let’s think about how much of the kinetic energy ‘harvested’ by the blades is transferred to the generator. The answer is, of course. not as much as we would hope. The majority is, hopefully, but a significant proportion is unavoidably lost via work done by friction to the thermal energy store of the gears.

This can be shown in a visually impactful way using the Bar Model approach:

Note that in this style of energy transfer diagram, the Principle of Conservation of Energy is communicated visually via the width of the bars. The bottom ‘End’ bar has to be exactly the same width as the top ‘Start’ bar.

What happens if a helpful maintenance engineer tops up the oil reservoir of the wind turbine? Well, we have a much happier situation, as shown below.

As we can see, a much greater proportion of the total energy is transferred usefully (and can be used to generate electrical power) in a well-maintained wind turbine.

Using energy efficient appliances in the home

How can we explain the advantages of using more efficient appliances in the home?

A diagram like this can help. The household that uses less efficient appliances has to buy more energy from their energy supplier to achieve exactly the same outcomes as the first. This is both more costly for the household as well as demanding that more resources are needed to generate electricity for no good reason.

Parachute vs. no parachute

Exactly the same amount of energy is transferred from the gravitational energy store of a parachutist whether their parachute deploys successfully or not. However, in the case of a successful deployment, much more energy is transferred into the thermal energy store of the surroundings than into their kinetic energy store. This helps ensure a safe landing!

Introducing vectors (part 1)

I think that teaching vectors to 14-16 year olds is a bit like teaching them to play the flute; that is to say, it’s a bit like teaching them to play the flute as presented by Monty Python (!)

Monty Python (1972), ‘How to play the flute’

Part of the trouble is that the definition of a vector is so deceptively and seductively easy: a vector is a quantity that has both magnitude and direction.

There — how difficult can the rest of it be? Sadly, there’s a good deal more to vectors than that, just as there’s much more to playing the flute than ‘moving your fingers up and down the outside'(!)

What follows is a suggested outline teaching schema, with some selected resources.

Resultant vector = total vector: the ‘I’ phase

‘2 + 2 = 4’ is often touted as a statement that is always obviously and self-evidently true. And so it is — arithmetically and for mere scalar quantities. In fact, it would be more precisely rendered as ‘scalar 2 + scalar 2 = scalar 4’.

However, for vector quantities, things are a wee bit different. For vectors, it is better to say that ‘vector 2 + vector 2 = a vector quantity with a magnitude somewhere between 0 and 4’.

For example, if you take two steps north and then a further two steps north then you end up four steps away from where you started. Also, if you take two steps north and then two steps south, then you end up . . . zero steps from where you started.

So much for the ‘zero’ and ‘four’ magnitudes. But where do the ‘inbetween’ values come from?

Simples! Imagine taking two steps north and then two steps east — where would you end up? In other words, what distance and (since we’re talking about vectors) in what direction would you be from your starting point?

This is most easily answered using a scale diagram.

To calculate the vector distance (aka displacement) we draw a line from the Start to the End and measure its length.

The length of the line is 2.8 cm which means that if we walk 2 steps north and 2 steps east then we up a total vector distance of 2.8 steps away from the Start.

But what about direction? Because we are dealing with vector quantities, direction just as important as magnitude. We draw an arrowhead on the purple line to emphasise this.

Students may guess that the direction of the purple ‘resultant’ vector (that is to say, it is the result of adding two vectors) is precisely north-east, but this can be a vague description so let’s use a protractor so that we can find the compass bearing.

And thus we find that the total resultant vector — the result of adding 2 steps north and 2 steps east — is a displacement of 2.8 steps on a compass bearing of 045 degrees.

Resultant vector = total vector: the ‘We’ phase

How would we go about finding the resultant vector if we moved 3 metres north and 4 metres east? If you have access to an interactive whiteboard, you could choose to use this Jamboard for this phase. (One minor inconvenience: you would have to draw the straight lines freehand but you can use the moveable and rotatable ruler and protractor to make measurements ‘live’ with your class.)

We go through a process similar to the one outlined above.

  • What would be a suitable scale?
  • How long should the vertical arrow be?
  • How long should the horizontal arrow be?
  • Where should we place the ‘End’ point?
  • How do we draw the ‘resultant’ vector?
  • What do we mean by ‘resultant vector’?
  • How should we show the direction of the resultant vector?
  • How do we find its length?
  • How do we convert the length of the arrow on the scale diagram into the magnitude of the displacement in real life?

The resultant vector is, of course, 5.0 m at a compass bearing of 053 degrees.

Resultant vector = total vector: the ‘You’ phase

Students can complete the questions on the worksheets which can be printed from the PowerPoint below.

Answers are shown on this second PowerPoint, plus an optional digital ruler and protractor are included on the third slide if you wish to use them.

Enjoy!