Helping Students With Extended Writing Questions in Science

Part one: general principles

He knew all the tricks: dramatic irony, metaphor, pathos, puns, parody, litotes* and . . . satire. He was vicious.

Monty Python, The Tale of the Pirhana Brothers

As we all know, students really struggle with questions in science exams which require answers written ‘at paragraph length’ (dread words!). What follows are some tips that I have found useful when coaching students to improve performance.

Many teachers of English enjoy great success with acronyms such as PEEL (Point. Example. Explain. Link). However, I think these have limited applicability in Science as the required output of extended writing questions (EWQs) varies too much for even a loose one-size-fits-all approach.

What I encourage students to do is:

1. Write in bullet points

The bullet points (BPs) should be short but fully grammatical sentences (and not single words or part sentences).

The reason for this is twofold:

  • Focus: it stops an attempted answer spiralling out of control. Without organising my answer using BPs, I find myself running out of space. I start with the best of intentions but realise, as I fill in the last remaining line of the allocated space, that I haven’t reached the end of the first sentence yet!!!
  • Organisation: it discourages students from repeating the same thing again and again. I have sometimes marked extended writing answers that repeat the same point multiple times. Yes, they have filled the space and yes, they have written in complete sentences. But there is no additional information except the first section rewritten using different words!

2. Use correct scientific vocabulary

Students often make the incorrect assumption that ‘Explain‘ means ‘Explain to a non-specialist using jargon-free everyday language‘.

In fact nothing could be further from the truth. The expectation of EWQs in general is that students should be able to communicate to a scientist-peer using technical language appropriate for GCSE or A-level.

Partly, this misconception is our own fault. When students ask for an explanation from their teachers, we often — with the best of intentions! — try to express it in non-threatening, jargon-free language.

This is the model that many students follow when responding to EWQs. For example, I remember groaning in frustration when marking an A-level Physics script where the student has repeatedly written the word ‘move’ when the terms ‘accelerate’ or ‘constant velocity’ would have communicated her understanding with far more clarity.

In Science, what is often derided as ‘jargon’ isn’t an actual barrier to understanding. In truth, a shared, specialist language is an essential pathway to concision and clarity and a guard-rail against inadvertent miscommunication.

3. Write as many BPs as there are marks

For example, students should aim to write 3 BPs in response to a 3-mark EWQ.

4. Read all your BPs. Taken as a whole — do they *answer* the damn question?

If yes, move on. If no, then add another BP.


Part two: modelling the EWQ response-process

‘What does “quantum” mean, anyway?’

‘It means “add another nought.”‘

Terry Pratchett, Pyramids

This EWQ has 3 marks, so we should aim for 3 BPs.

I use the analogy of crossing a river using stepping stones. One stepping stone won’t be enough but three will let us get across — hopefully without us getting our feet wet.

Let’s write our first BP. I suggest that students begin by stating what they may think is obvious.

Next, we think about what we could write as our second BP. But — and this is essential! — we consider it from the vantage point of our first BP.

Our second BP is the next-most-obvious-BP: what happens to the solenoid when an electric current goes through it? Remember that we are supposed to use technical language, so we will call a solenoid a solenoid, so to speak.

Next, we consider what to write for our third (and maybe final) BP. Again, we should be thinking of this from the viewpoint of what we have already written.

Finally, and this point is not to be missed, we should look back at all the BPs we have written and ask ourselves the all-important ‘Have I actually answered the question that was asked originally?

In this case, the answer is YES, we have explained why the door unlocks when the switch is closed.

This means that we can stop here and move on to the next question.


*Litotes (LIE-tote-ees): an ironic understatement in which an affirmative is expressed as a negative e.g. I won’t be sorry to get to the end of this not-at-all-overlong blog post.

The Twelve Physics Pracs of Gove (Part Two)

A true-devoted pilgrim is not weary
To measure kingdoms with his feeble steps

–William Shakespeare, The Two Gentlemen of Verona

 

A picture [of reality]  . . .  is laid against reality like a measure  . . .   Only the end-points of the graduating lines actually touch the object that is to be measured  . . .   These correlations are, as it were, the feelers of the picture’s elements, with which the picture touches reality.

–Ludwig Wittgenstein, Tractatus-Logico-Philosophicus 2.141-2.1515

 

What they say of disc jockeys is also true of teachers: that someone, somewhere will remember some of your words forever; or, at least, for the duration of their lifetime. The downside is, of course, that you never know which of your words are going to be remembered. The wittily-crafted, near-Wildean aphorism pregnant with socratic wisdom — probably not. The unintentionally hilarious malapropism that makes you sound like a complete plonker — almost certainly.

To this day, I still remember Dr Prys’ sharp and appropriate response to a flippant comment (possibly from the callow 6th form me) about whether the scientific constants listed in the data book were truly trustworthy: “Look,” he said, “people have dedicated their whole lives to measuring just one of these numbers to one extra decimal place!” True devoted pilgrims indeed, mapping out the Universe step by tiny step, measurement by measurement.

I have written before on what I consider to be the huge importance of practical work in Physics education. Without hands-on experience of the hard work involved in the process of precise measurement, I do not believe that students can fully appreciate the magnificent achievement of the scientific enterprise: in essence, measurement is how scientific theories “touch” reality.

I am encouraged that parts of this view seem to be shared by the writers of the Subject Content guidance. (All hail our Govean apparatchik overlords!)

Of course, this has to be balanced with the acknowledgement that (as I understand it at least) teacher-assessed practical work will no longer count towards a student’s final exam grade. Many are concerned that this is actually a downgrading of the importance of practicals in Science and thus a backward step.

Sadly, they may turn out to be right: “We have to have this equipment for the practical/controlled assessment!” will no longer be a password for unlocking extra funding from recalcitrant SLTs (and from the exam budget too — double win!)

And, undoubtedly, some “teach-to-the-test” schools will quietly mothball their lab equipment (except for the showy stuff — like the telescope that no-one knows how to use — that they bring out for prospective pupil tours).

That would be sad, and although the DfE have, to be fair, nailed their pro-practical colours to the mast, we all know that the dreaded Law of Unintended Consequences may have the last laugh.

I would say it all depends on how the new A levels are actually put together. I will be attending some “launch events” in the near future. I will blog on whether I think we can expect an Apollo 11 or an Apollo 13 at that time.

In the meantime, I will be setting practicals galore as usual, as I’m old-fashioned enough to think that they give a lovely baroque feel to a scheme of work…

Look at me, I design coastlines, I got an award for Norway. Where’s the sense in that? None that I’ve been able to make out. I’ve been doing fiords all my life, for a fleeting moment they become fashionable and I get a major award. In this replacement Earth we’re building they’ve given me Africa to do, and of course, I’m doing it will all fjords again, because I happen to like them. And I’m old fashioned enough to think that they give a lovely baroque feel to a continent. And they tell me it’s not equatorial enough…
–Slartibartfast, from The Hitch-Hikers Guide to the Galaxy by Douglas Adams

image

The Physicist’s Eulogy

“You want a physicist to speak at your funeral. You want the physicist to talk to your grieving family about the Principle of Conservation of Energy, so that they will understand that your energy has not died. You want the physicist to remind your sobbing mother about the First Law of Thermodynamics: that no energy gets created in the universe, and none is destroyed. You want your mother to know that all your energy, every vibration, every joule of heat, every wave of every particle that was her beloved child remains with her in this universe. You want the physicist to tell your weeping father that amid the energies of the cosmos, you gave as good as you got.

“And at one point you’d hope that the physicist would step down from the pulpit and walk to your broken-hearted spouse there in the pew and tell him that all the photons that ever bounced off your face, all the particles whose paths were interrupted by your smile, by the touch of your hair — those hundreds of trillions of particles — have raced off like children, their ways forever changed by you. And as your spouse rocks in the arms of a loving family, may the physicist let him know that the photons that bounced from you and that were gathered in the particle detectors that are his eyes, that those photons have created within his brain constellations of electromagnetically charged neurons whose energy will go on forever.

“And the physicist will remind the congregation of how much of all our energy is given off as heat. There may be a few fanning themselves with their programs as she says it. And she will tell them that the warmth that flowed through you in life is still here, still part of all that we are, even as we who mourn continue the heat of our own lives.

“And you’ll want the physicist to explain to those who loved you that they need not have faith; indeed, they should not have faith. Let them know that they can measure, that scientists have measured precisely the conservation of energy and found it accurate, verifiable and consistent across space and time. You can hope that your family will examine the evidence and satisfy themselves that the science is sound and that they will be comforted to know that your energy is still around.

“Because, according to both the First and Second Laws of Thermodynamics, not one bit of you is gone: you’re just less orderly.”

Original author unknown. Quoted by ‘WelshmanEC2’ in The Guardian http://www.theguardian.com/commentisfree/2014/feb/14/below-the-line-people-angry-science-astronomy-enthusiast [accessed 14/2/14].  NB: some minor stylistic amendments made in the version presented here.

Update: the original author is Aaron Freeman who performed it on NPR Radio in 2005. Original transcript here. Audio of performance (with added slideshow) here.